Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 6 de 6
Filtrar
Más filtros










Base de datos
Intervalo de año de publicación
1.
Horm Behav ; 161: 105529, 2024 May.
Artículo en Inglés | MEDLINE | ID: mdl-38492501

RESUMEN

Central to the navigation of an ever-changing environment is the ability to form positive associations with places and conspecifics. The functions of location and social conditioned preferences are often studied independently, limiting our understanding of their interplay. Furthermore, a de-emphasis on natural functions of conditioned preferences has led to neurobiological interpretations separated from ecological context. By adopting a naturalistic and ethological perspective, we uncover complexities underlying the expression of conditioned preferences. Development of conditioned preferences is a combination of motivation, reward, associative learning, and context, including for social and spatial environments. Both social- and location-dependent reward-responsive behaviors and their conditioning rely on internal state-gating mechanisms that include neuroendocrine and hormone systems such as opioids, dopamine, testosterone, estradiol, and oxytocin. Such reinforced behavior emerges from mechanisms integrating past experience and current social and environmental conditions. Moreover, social context, environmental stimuli, and internal state gate and modulate motivation and learning via associative reward, shaping the conditioning process. We highlight research incorporating these concepts, focusing on the integration of social neuroendocrine mechanisms and behavioral conditioning. We explore three paradigms: 1) conditioned place preference, 2) conditioned social preference, and 3) social conditioned place preference. We highlight nonclassical species to emphasize the naturalistic applications of these conditioned preferences. To fully appreciate the complex integration of spatial and social information, future research must identify neural networks where endocrine systems exert influence on such behaviors. Such research promises to provide valuable insights into conditioned preferences within a broader naturalistic context.


Asunto(s)
Recompensa , Animales , Motivación/fisiología , Humanos , Sistema Endocrino/fisiología , Conducta Social , Condicionamiento Psicológico/fisiología , Aprendizaje por Asociación/fisiología
2.
Ann N Y Acad Sci ; 1530(1): 161-181, 2023 12.
Artículo en Inglés | MEDLINE | ID: mdl-37800392

RESUMEN

Male songbirds produce female-directed songs in spring that convey a state of sexual motivation. Many songbirds also sing in fall flocks in affiliative/gregarious contexts in which song is linked to an intrinsic positive affective state. The periaqueductal gray (PAG) in mammals, which is organized into functional columns, integrates information from multiple brain regions and relays this information to vocal motor areas so that an animal emits a vocal signal reflective of its affective state. Here, we test the hypothesis that distinct columns in the songbird PAG play roles in the distinct affective states communicated by sexually motivated and gregarious song. We quantified the numbers of immediate early gene ZENK-positive cells in 16 PAG subregions in male European starlings (Sturnus vulgaris) after singing gregarious or sexually motivated song. Results suggest that distinct PAG columns in songbirds context-specifically regulate song, agonistic, and courtship behaviors. A second exploratory, functional tract-tracing study also demonstrated that inputs to the PAG from specific subregions of the medial preoptic nucleus may contribute to gregarious song and behaviors indicative of social dominance. Together, findings suggest that conserved PAG columns and inputs from the preoptic nucleus may play a role in context-specific vocal and other social behaviors.


Asunto(s)
Sustancia Gris Periacueductal , Estorninos , Animales , Masculino , Femenino , Sustancia Gris Periacueductal/fisiología , Conducta Sexual Animal/fisiología , Vocalización Animal/fisiología , Encéfalo/fisiología , Motivación , Estorninos/fisiología , Mamíferos
3.
Horm Behav ; 153: 105374, 2023 Jul.
Artículo en Inglés | MEDLINE | ID: mdl-37271085

RESUMEN

It is proposed that songbird flocks are partly reinforced by positive social interactions, however not all flock mate interactions are positive. The combination of both positive and negative social interactions with flock mates may play a role in the motivation for birds to flock. The nucleus accumbens (NAc), medial preoptic area (POM), and ventral tegmental area (VTA) are implicated in vocal-social behaviors in flocks, including singing. Dopamine (DA) within these regions modifies motivated, reward-directed behaviors. Here, we begin to test the hypothesis that individual social interactions and DA within these regions are involved in the motivation to flock. Vocal-social behaviors were recorded in eighteen male European starlings in mixed-sex flocks in fall, when starlings are highly social and form large flocks. Males were then singly removed from their flock and the motivation to flock was quantified as the amount of time spent attempting to join a flock following separation. We used quantitative real-time polymerase chain reaction to measure expression of DA-related genes in the NAc, POM, and VTA. Birds producing high levels of vocal behaviors were more highly motivated to flock and had higher tyrosine hydroxylase (the rate-limiting enzyme in DA synthesis) expression in the NAc and VTA. Birds that received high levels of agonistic behaviors were less motivated to flock and had higher DA receptor subtype 1 expression in the POM. Overall, our findings suggest that interplay between social experience and DA activity in NAc, POM, and VTA plays a key role in social motivation in flocking songbirds.


Asunto(s)
Motivación , Estorninos , Animales , Masculino , Estorninos/metabolismo , Dopamina/metabolismo , Vocalización Animal , Conducta Sexual Animal , Conducta Social , Área Tegmental Ventral/metabolismo , Expresión Génica
4.
Front Physiol ; 13: 970920, 2022.
Artículo en Inglés | MEDLINE | ID: mdl-36171974

RESUMEN

It has been proposed that social cohesion in gregarious animals is reinforced both by a positive affective state induced by social interactions and by the prevention of a negative state that would be caused by social separation. Opioids that bind to mu opioid receptors (MORs) act in numerous brain regions to induce positive and to reduce negative affective states. Here we explored a potential role for MORs in affective states that may impact flocking behavior in mixed-sex flocks of nonbreeding European starlings, Sturnus vulgaris. Singing behavior, which is considered central to flock cohesion, and other social behaviors were quantified after infusions of the MOR agonist D-Ala2, N-Me-Phe4, glycinol5-ENK (DAMGO) into either the medial preoptic area (POM) or the nucleus accumbens (NAC), regions previously implicated in affective state and flock cohesion. We focused on beak wiping, a potential sign of stress or redirected aggression in this species, to provide insight into a presumed negative state. We also used conditioned place preference (CPP) tests to provide insight into the extent to which infusions of DAMGO into POM or NAC that stimulated song might be rewarding. We found that MOR stimulation in either POM or NAC dose-dependently promoted singing behavior, reduced beak wiping, and induced a CPP. Subtle differences in responses to MOR stimulation between NAC and POM also suggest potential functional differences in the roles of these two regions. Finally, because the location of NAC has only recently been identified in songbirds, we additionally performed a tract tracing study that confirmed the presence of dopaminergic projections from the ventral tegmental area to NAC, suggesting homology with mammalian NAC. These findings support the possibility that MORs in POM and NAC play a dual role in reinforcing social cohesion in flocks by facilitating positive and reducing negative affective states.

5.
Front Psychol ; 13: 903857, 2022.
Artículo en Inglés | MEDLINE | ID: mdl-35814050

RESUMEN

Birds are not commonly admired for emotional expression, and when they are, the focus is typically on negative states; yet vocal behavior is considered a direct reflection of an individual's emotional state. Given that over 4000 species of songbird produce learned, complex, context-specific vocalizations, we make the case that songbirds are conspicuously broadcasting distinct positive emotional states and that hearing songs can also induce positive states in other birds. Studies are reviewed that demonstrate that that the production of sexually motivated song reflects an emotional state of anticipatory reward-seeking (i.e., mate-seeking), while outside the mating context song in gregarious flocks reflects a state of intrinsic reward. Studies are also reviewed that demonstrate that hearing song induces states of positive anticipation and reward. This review brings together numerous studies that highlight a potentially important role for the songbird nucleus accumbens, a region nearly synonymous with reward in mammals, in positive emotional states that underlie singing behavior and responses to song. It is proposed that the nucleus accumbens is part of an evolutionarily conserved circuitry that contributes context-dependently to positive emotional states that motivate and reward singing behavior and responses to song. Neural mechanisms that underlie basic emotions appear to be conserved and similar across vertebrates. Thus, these findings in songbirds have the potential to provide insights into interventions that can restore positive social interactions disrupted by mental health disorders in humans.

6.
eNeuro ; 8(5)2021.
Artículo en Inglés | MEDLINE | ID: mdl-34475266

RESUMEN

Social connections in gregarious species are vital for safety and survival. For these reasons, many bird species form large flocks outside the breeding season. It has been proposed that such large social groups may be maintained via reward induced by positive interactions with conspecifics and via the reduction of a negative affective state caused by social separation. Moreover, within a flock optimal social spacing between conspecifics is important, indicating that individuals may optimize spacing to be close but not too close to conspecifics. The µ-opioid receptors (MORs) in the nucleus accumbens (NAc) are well known for their role in both reward and the reduction of negative affective states, suggesting that MOR stimulation in NAc may play a critical role in flock cohesion. To begin to test this hypothesis, social and nonsocial behaviors were examined in male and female European starlings (Sturnus vulgaris) in nonbreeding flocks after intra-NAc infusion of saline and three doses of the selective MOR agonist d-Ala2-N-Me-Phe4-Glycol5-enkephalin (DAMGO). DAMGO in NAc dose-dependently increased singing behavior and facilitated social approaches while at the same time promoting displacements potentially used to maintain social spacing. These findings support the hypothesis that MORs in NAc promote social interactions important for group cohesion in nonsexual contexts and suggest the possibility that MORs in the NAc play a role in optimizing the pull of joining a flock with the push of potential agonistic encounters.


Asunto(s)
Estorninos , Animales , Femenino , Humanos , Masculino , Núcleo Accumbens/metabolismo , Receptores Opioides mu/metabolismo , Recompensa , Interacción Social , Estorninos/metabolismo , Vocalización Animal
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA
...